
http://repositorio.ulusiada.pt

Universidades Lusíada

Pinto, Paulo Jorge Gonçalves, 1956-
Yang, Hongji

Definition of sort function in relations and its
usage in relational database management systems
http://hdl.handle.net/11067/5220

Metadata

Issue Date 2010

Abstract Este documento demonstra que o modelo matemático obtido pela adição
de uma função a uma relação, e que a possa ordenar, demonstrando que
a propriedade de fecho das operações entre relações se mantém, pode
constituir uma extensão do modelo relacional....

This document approaches the possibility of adding a mathematical
function to a relation that could sort that relation, demonstrating that the
closure property of relations are still kept, so that this mathematical model
can be used as extension of the base relational model....

Keywords Bases de dados relacionais

Type article

Peer Reviewed No

Collections [ULL-FCEE] LEE, n. 10 (2010)

This page was automatically generated in 2020-12-04T18:24:37Z with
information provided by the Repository

http://hdl.handle.net/11067/5220

71Lusíada. Economia & Empresa, Lisboa, n.º 10/2010

Definition of sort function in relations and
its usage in Relational Database Management

Systems

Paulo Jorge Gonçalves Pinto
Doutorando em Base de Dados (DeMontfort University)

Docente da Universidade Lusíada

 Hongji Yang
 Ph.D. (Durham), MIEEE

Professor em DeMontFort University

73Lusíada. Economia & Empresa, Lisboa, n.º 10/2010

Resumo: Este documento demonstra que o modelo matemático obtido pela
adição de uma função a uma relação, e que a possa ordenar, demonstrando que
a propriedade de fecho das operações entre relações se mantêm, pode constituir
uma extensão do modelo relacional.

Abstract: This document approaches the possibility of adding a mathematical
function to a relation that could sort that relation, demonstrating that the closure
property of relations are still kept, so that this mathematical model can be used
as extension of the base relational model.

Paulo Jorge Gonçalves Pinto e Hongi Yang

75Lusíada. Economia & Empresa, Lisboa, n.º 10/2010

1. Introduction

When E. F. Codd, an IBM researcher, in late 1968 defined the mathematical
model known nowadays as the relational model, and in June 1970 published
“A Relational Model of Data for Large Shared Databanks”[1] – document that is
considered a classic in the present – what really happened was that, differently
from former systems1, Codd gave rigor and principles to his model before the
implementation.

Since then several authors that, in a direct or indirect form were based on
this document (and in others that followed) and the industry used such model
as a base to implement RDBMS (Relational Database Management Systems). Are
known, besides a second Codd document published in 1990, several books from
other several authors like C. J. Date[4,9].

In the relational model, and according to Codd’s paper, any user would
always see the data through the shape of a table, even if that data were the result of
a former relational operation with another set of data. This way has the property
of being simple and effective, since the outcome of a relational operation can be
used seamless as an input to another relational operation, with no need for the
user to perceive it.

What wasn’t approached on the model it’s the utility that is given to each
one of the relations and although we can say that for a relation the order of the
rows it’s not concerning (because it contains the same data), to an end user that
isn’t true because he will use it differently.

Even Codd, in his original paper nothing states about the row order
(besides it’s irrelevant), since that order seems not important to the development
of relational algebra.

But let us look at some theoretical aspects. Relational Algebra, because its
an algebra in a mathematical way, considers that for a certain set (the relation
set) and for certain sets of operations (called relational operations) it has the
closure property, meaning that the result of an operation over the relations would
produce a new relation itself contained in the original set of relations[13].

1 The systems that were in use at that time were the inverted list, hierarchic and network. The models
for those systems were defined afterwards and not before they were commercially implemented.
The relational model was first defined and then implemented.

Definition of sort function in relations and its usage in Relational Database Management Systems

76 Lusíada. Economia & Empresa, Lisboa, n.º 10/2010

Is this property that allows to present all the relations in a shape of a table,
and allows also to define those operations, not as row to row processing process,
but as a result set of an operation between relations (although the row to row
processing would be laying under that, but its responsibility of the database
engine, not the user’s).

In an approach to the reality, we see that, beyond all, the order that the
tuples from a relation present themselves to the end user, although they have no
meaning to the relational calculus, they are indeed important to that user.

In a matter of fact, it’s the utility that makes those data sets different, although
they contain the very same data. It’s the use that one user gives to those lists that
makes them different from each other. A customer list sorted by customer’s last
name it’s used differently from a list sorted by customer’s ID, even if those two
lists are, in a relational point of view, the same relation.

We are to believe, then, that the order of the rows it’s not so irrelevant that
can be depicted.

Let us take as an example, an application designed with database technologies
that has as a fundamental request that the out coming data of a certain query
should never be presented in the same sort order although the base query the
same. This is a real case and concerns a list of hotels with rooms to let and the
request is that even if two different users choose the same criteria to search for
a room, the result must be sorted differently so that equality of opportunity was
given to each hotel in the list. How can we fulfil that request if sort order is not a
result of a relational operation?

In another case it is necessary to obtain the values of a budget with the
running sum along with it (in every row, not summarized at the end). How
can we sum in each row the precedent values without breaking the database
performance, meaning, without having to calculate totals for the running sum for
every row in the table? How can we do this if we have no order and we cannot
know which row is before and after in the result set?

As these there are hundreds of other similar cases where sorting the results
has a major importance in the final outcome.

With these considerations, we must conclude that the relational model will
be richer if we could implement sort order anyway.

But what is sorting a relation all about?
Sorting a relation is no more than assign an order number (that will start from

1 to the number of tuples of that relation) to every tuple of a relation and sort by
that number. To do such as assignment we will have to define one function (the
sorting function) that for each tuple returns a number between 1 and N, being N
the number of tuples in that relation.

We will define, then, that one extended relation is composed by a set of data
(a relation - R) and one sorting function . Since the function only applies to one
relation (with a relation becomes an element of this new set), every relation will
have one or more functions that can sort it. But the some relation composed with

Paulo Jorge Gonçalves Pinto e Hongi Yang

77Lusíada. Economia & Empresa, Lisboa, n.º 10/2010

two different sorting functions are also two different elements of the new set.
If we operate that relation with another relation through any relational

operator we will have a new relation (closure property of the relations) that will
present its data with any kind of order even if there is no previous specification
of that order.

But that result set will have some kind of order, so we can claim that such
sorting function exists (although it might be unknown) since the results are
presented in some kind of order.

Then this extended model also has a closure property as long as we take
the relations (regardless of their sorting functions) operate them with a relational
operator and assign an sorting function to the resultant relation. From a
mathematical point of view it is formally an algebra.

On the other hand the sorting function must have a set of attributes to be
considered as one.

A function to be considered an sorting function must:
•	 Accept a relation as its primary input
•	 Return the same relation with an extra attribute set: Order Id, which is a

natural number starting in one and N, being N the number of elements (tuples).
With these two premises taken, we can consider the following
Considering the pair E1=(R1, 1) and E2=(R2, 2) with (R1, 1) being an

extended relation in which R1 is a relation associated with an sorting function 1
and (R2, 2) is another extended relation in which R2 is a relation associated to
an sorting function 2, we can define the relational operation θ between E1 and
E2 (E1 θ E2) giving the result as an extended relation E3 = (R3, 3) in which R3 =
R1 θ R2 and 3 its sorting function.

We will have then (E1 θ E2) = (R1, 1) θ (R2, 2) = ((R1 θ R2), 3) = E3
We shall note that the sorting function 3 doesn’t have to be defined by the

other two (1 and 2).
Then how could this help to solve the problems that were stated at the

beginning of this paper?
Let’s see. In the first case, it would be sufficient to associate to the resulting

relation a sorting function with a random output, so that each time the function
was associated with that particular set of data would produce a different extended
relation.

In the second case, since the sorting function can be inverted it’s not only
possible to know what particular order has a tuple, but also its possible to know
the value of any field from any row. We could have access to the running value
stored in the previous row and, without remaking all the calculations, to add
only the value in a line to the previous running values to obtain the new running
value.

We must now perceive what the advantages of this model are since the
industry, regardless of the theoretical model, has implemented its own data
sorting (need felt since ever) through SQL[7], being SQL itself a standard (ORDER

Definition of sort function in relations and its usage in Relational Database Management Systems

78 Lusíada. Economia & Empresa, Lisboa, n.º 10/2010

BY clause).
What then this new model brings that SQL’s ORDER BY doesn’t have?
First of all, the ORDER BY clause can only be applied to the columns (fields)

of the result set, whistle the sorting function, although it receives as an argument
the all tuple, doesn’t need to use any of the raw data to assign a order number
(e.g. The “natural” order, meaning, whatever tuple is presented the sorted results
would always be 1,2,3,…,N).

On the other hand, the ORDER BY clause uses only the binary content of
the field to sort the results out (ascending or descending), whistle the sorting
function doesn’t have that limitation. It can assign an order number to a row
depending only the way it was defined.

Finally we can use the sorting function to define non-linear business rules,
complex mathematic expressions, random expressions or any other kind of
expressions, since the model have no restriction in its internal logic and how the
sorting numbers are calculated.

So, in the first case we could only execute a simple database query with the
following possible syntax:

SELECT HotelName, RoomFee
FROM Hotel
WHERE RoomType IN (@TypeList) AND RoomFee BETWEEN @LowPrice
AND @HighPrice
ORDER BY RANDOM()2

Since that statement its not possible to issue, with the present database
engines, it was build a procedure that assigns to a temporary table to store the
results a new field filled with a random number between 1 and ROWCOUNT()
(i.e. the number of rows the the query is returning). Finally the procedure queries
that temporary table sorting out the results by that random field.

This is a so complex solution that it required a row level processing which
must be avoided at all cost.

Since row level processing must be avoided, row identification is nevertheless
useful and can be used to avoid some of that nasty row level processing.

We now have, indeed, the concept of “first”, “last”, “previous”, “next”, “n-
th” when referring to any tuple.

Although it seems like a going back, in concern with the relational model –
in a matter of fact, after have been defined the operations between relations with
the due independence regarding its tuples – getting row references (pointers) it
seems like a going back. And it would be if we use it for row level processing of
the relation. But what we want to define is some new aggregate functions that
can use the relative positioning of the rows (their order) in a way that they could
be integrated in the SQL so data can be manipulated.
One practical example would be the function PREV(domain) that
2 We shall use the bold formatting whenever proposed syntax is included in SQL statements

Paulo Jorge Gonçalves Pinto e Hongi Yang

79Lusíada. Economia & Empresa, Lisboa, n.º 10/2010

would return the value in the domain “domain” in the previous row3.
If we define that PREV(domain), according with other SQL aggregate
functions, would return a NULL value for the first row, we could have the
following query (in MS-SQL) to solve the second case:

SELECT DtBudg, MonthValue, ISNULL(PREV(Accumul),0) + MonthValue as
Accumul
FROM Budget
WHERE DtBudg BETWEEN ‘1-Jan-2004’ AND ‘31-Dec-2004’
ORDER BY DtBudg()

DtBudg() is a sorting function based on a table field (it would be equivalent to
the actual ORDER BY DtBudg).

This query would then give for a given time slice, the monthly values of
the budget, sorted by budget date with the running sums of the monthly values
along with these.

Given the following table
DtBudg MonthValue
31-10-2003 1.000,00€
1-1-2004 500,00€
1-6-2004 2000,00€
1-1-2005 750,00€

The result of such a query would be:

DtBudg MonthValue Accumul
1-1-2004 500,00€ 500,00€
1-6-2004 2000,00€ 2.500,00€

The SQL to execute the very same function, using Microsoft’s T-SQL, which also
solves the proposed case, is the following:

SELECT B.DtBudg, B.MonthValue, Accumul = (SELECT SUM(MonthValue)
	 FROM Budget BB
	 WHERE BB.DtBudg BETWEEN ‘1-Jan-2004’ AND B.DtBudg)
FROM Budget B
WHERE B.DtBudg BETWEEN ‘1-Jan-2004’ AND ‘31-Dec-2004’
ORDER BY B.DtBudg

Although, technically it can be executed, in a matter of fact, beyond the
statement is much more difficult to understand, the sum is calculated for each
row instead of using the last value computed from the last row, as our model
proposes, and affecting the overall performance.

3 Note that it is not the previous value for that domain, but the value for that domain from the previ-
ous tuple.

Definition of sort function in relations and its usage in Relational Database Management Systems

80 Lusíada. Economia & Empresa, Lisboa, n.º 10/2010

2. Conclusions

Data sorting has always been a need by those who use Relational Database
Management Systems, that even in the standard SQL/92 was included the ORDER
BY clause which allows to sort the resulting dataset of an SQL expression, but
lacks theoretical support since the classical relational model disregard relation
sorting because it’s considered unnecessary.

Using such an extension could provide some theoretical support in a way
to suppress the gap between the relational model most rigorous mathematical
definitions and the standard SQL in what sorting is concerned.

This document only wants to be the very beginning of a deep study in
which can be possible to define at the mathematical level a solid foundation to
data sorting that, and similarly to the relational model itself, can transpose to the
SQL a whole new set of functionalities related with sort orders and supported by
this extension of the relational model.

Finally its clearly demonstrated that there is a need for, in this particular
field, a more in-depth research is such a way that the gap referred here between
the theoretical model and its practical implementation could be fulfilled

References:

[1] CODD, Edgar F.: “A Relational Model of Data for Large Shared Data Banks”,
Comm. of the ACM 13, No. 6 (June 1970)

[2] CHEN, Peter P-S.: “The Entity-Relationship Model - Toward a Unified View
of Data”, ACM, Transactions on Database Systems (1976)

[3] MARTIN, James: “Principles of Database Management”, Prentice-Hall (1976,
1989).

[4] DATE, Christopher J.: “An Introduction to Database Systems - 8th Edition”,
Addison-Wesley (2003)

[5] NG, Wilfred K.: “An Extension of the Relational Database Model to Incorporate
Ordered Domains”, ACM, Transactions on Database Systems, Vol. 26, No. 3
(September 2001).

[6] REED, Paul: “The Unified Modeling Language Takes Shape”, DBMS 11, Nº 8
(July 1998)

[7] ISO/IEC 9075-*: 2003, Information technology — Database Languages — SQL
(2003~2006)

[8] – CODD, Edgar F.: “Domains, Keys, and Referential Integrity on Relational
Databases”, InfoDB3, Nº 1 (Spring 1988)

[9] – DATE, Christopher J.: “Referential Integrity”, Proc.7th Int. Conference on
Very Large Data Banks, Cannes, France (September 1981)

[10] – HALL, P. OWLETT, J. and TODD, S. J. P.: “Relations and Entities” in G. M.

Paulo Jorge Gonçalves Pinto e Hongi Yang

81Lusíada. Economia & Empresa, Lisboa, n.º 10/2010

Nijssen (ed.) Modeling in Data Base Management Systems, Amsterdam, The
Netherlands: North-Holland/New York, N. Y.: Elsevier Science (1975)

[11] – CODD, Edgar F.: “Data Models in Database Management”, Proc. Workshop
on Data Abstraction, Databases and Conceptual Modeling, Pingree Park, Colo
(June 1980)

[12] – CHAUDHURI, Surajit and SHIM, Kyuseok: “Optimizations of Queries
with User-defined Predicates”, Proceedings 22nd International Conference on
Very Large Data Bases, Mumbai (Bombay), India (September 1996)

[13] –	 BRAUMANN, Pedro B.: “Teoria da Medida e da Probabilidade – Parte I:
Álgebra de Conjuntos”, Fundação Calouste Gulbenkian, (1987)4

4 Professor Pedro Braumann was Portuguese and this book was never translated. The title means
“Theory of measure and probability – Part I: Algebra of Sets”

